
D e p t o f C S E , M B I T S Page 1

Scheduling Algorithms (Overview & Problems)

Algorithms decide which of the processes in the ready queue is

to be allocated the CPU.

1. First-Come, First-Served Scheduling (FCFS)

 The process that requests the CPU first is allocated the

CPU first.

 The implementation of the FCFS policy is easily managed

with a FIFO queue.

 Always non-preemptive

 Consider the following set of processes that arrive at time

0, with the length of the CPU burst given in milliseconds:

 If the processes arrive in the order P1, P2, P3, and are

served in FCFS order, we get the result shown in the

following ‘Gantt chart’, which is a bar chart that

illustrates a particular schedule, including the start and

finish times of each of the participating processes:

D e p t o f C S E , M B I T S Page 2

 The waiting time is 0 milliseconds for process P1, 24

milliseconds for process P2, and 27 milliseconds for

process P3.

 Thus, the average waiting time is (0+ 24 + 27)/3 = 17

milliseconds.

 If the processes arrive in the order P2, P3, P1,

The waiting time is 6 milliseconds for process P1,

0 milliseconds for process P2, and

3 milliseconds for process P3.

 The average waiting time is now (6 + 0 + 3)/3 = 3

milliseconds.

This reduction is substantial.

Thus, the average waiting time under an FCFS policy is

generally not minimal and may vary substantially if the

processes’ CPU burst times vary greatly.

Advantages:

 Simplest

 Easy to write and implement

Disadvantages:

 The average waiting time under the FCFS policy is

often quite long.

 It may vary substantially if the processes’ CPU burst times

vary greatly.

D e p t o f C S E , M B I T S Page 3

 There is a ‘convoy effect’, as all the other processes wait

for the one big process to get off the CPU. This effect

results in lower CPU and device utilization. It can be

solved if the shorter processes were allowed to go first.

Convoy effect occurs if one big CPU bound process comes

along with some I/O bound processes

 FCFS scheduling algorithm is nonpreemptive. Once the

CPU has been allocated to a process, that process keeps the

CPU until it releases the CPU, either by terminating or by

requesting I/O. So FCFS algorithm is not suitable for

time-sharing systems

 It would be disastrous to allow one process to keep the

CPU for an extended period.

2. Shortest-Job-First Scheduling (SJF)

 When the CPU is available, it is assigned to the process

that has the smallest next CPU burst.

 If the next CPU bursts of two processes are the same,

FCFS scheduling is used to break the tie.

 More appropriate term for this scheduling method would

be the shortest-next-CPU-burst algorithm, because

scheduling depends on the length of the next CPU burst of

a process, rather than its total length.

 Consider the following set of processes that arrive at time

0, with the length of the CPU burst given in milliseconds

D e p t o f C S E , M B I T S Page 4

The scheduling is done as follows:

The waiting time is 3 milliseconds for process P1,

16 milliseconds for process P2,

9 milliseconds for process P3, and

0 milliseconds for process P4.

 Thus, the average waiting time is (3 + 16 + 9 + 0)/4 = 7

milliseconds.

 By comparison, if we were using the FCFS scheduling

scheme for this example, the average waiting time would

be 10.25 milliseconds.

P1 P2 P3 P4

0 6 14 21

 24

The waiting time is 0 milliseconds for process P1,

6 milliseconds for process P2,

14 milliseconds for process P3, and

21 milliseconds for process P4.

 Thus, the average waiting time is (0 + 6 + 14 + 21)/4 =

10.25 milliseconds.

D e p t o f C S E , M B I T S Page 5

Advantage:

 The SJF scheduling algorithm is optimal, in that it gives

the minimum average waiting time for a given set of

processes.

Disadvantages:

 The real difficulty with the SJF algorithm is knowing the

length of the next CPU request. Although the SJF

algorithm is optimal, it cannot be implemented at the

level of short-term CPU scheduling. With short-term

scheduling, there is no way to know the length of the next

CPU burst. One solution to this problem is to try to

approximate SJF scheduling. We may be able to predict

its value. We expect that the next CPU burst will be similar

in length to the previous ones. The next CPU burst is

generally predicted as an exponential average of the

measured lengths of previous CPU bursts. It is calculated

using exponential average formula

 The SJF algorithm can be either preemptive or

nonpreemptive.

 Preemptive SJF scheduling is sometimes called

shortest-remaining-time-first scheduling (SRTF).

 Example, consider the following four processes, with the

length of the CPU burst given in milliseconds:

D e p t o f C S E , M B I T S Page 6

 Nonpreemptive SJF scheduling would result in an

average waiting time of 7.75 milliseconds.

P1 P2 P4 P3

 0 8 12 17 26

The waiting time for process P1: P1 started at 0, P1 arrived

at 0. So waiting time for P1 in first slot is (0-0) = 0.

For process P2, started at 8, but arrived at 1, So waiting

time is (8-1) = 7 milliseconds

For process P3, started at 17, but arrived at 2, So waiting

time is (17-2) = 15 milliseconds

For process P4, started at 12, but arrived at 3, So waiting

time is (12-3) = 9 milliseconds

 Average waiting time is (0+7+15+9)/4 = 7.75

milliseconds.

From Gantt chart, we can directly calculate the average

waiting time as

[(0-0) + (8-1) + (17-2) + (12-3)] / 4 = 7.75 milliseconds

 Preemptive SJF (SRTF) schedule is as depicted in the

following Gantt chart:

D e p t o f C S E , M B I T S Page 7

Process P1 is started at time 0, since it is the only process

in the queue. Process P2 arrives at time 1. The remaining

time for process P1 (7 milliseconds) is larger than the time

required by process P2 (4 milliseconds), so process P1 is

preempted, and process P2 is scheduled.

The waiting time for process P1: P1 is executed in 2 slots.

In first slot, P1 started at 0, P1 arrived at 0. So waiting time

for P1 in first slot is (0-0) = 0. In second slot, it started at

time 10, but first slot ended at time 1. So waiting time in

second slot is (10-1) = 9. So total waiting time for P1 is

0+9 = 9 milliseconds.

For process P2, only one slot. Starts at time 1, but arrived

at time 1 only. So waiting time is (1-1) = 0 milliseconds

For P3, (17 – 2) = 15 and for P4, (5-3) = 2 milliseconds.

Average waiting time is (9+0+15+2)/4 = 6.5 milliseconds.

From Gantt chart, we can directly calculate the average

waiting time

 [((0-0)+(10 − 1)) + (1 − 1) + (17 − 2) + (5 − 3)]/4 = 26/4

= 6.5 milliseconds.

3. Priority Scheduling

 Based on the priority of the process

 Both pre-emptive and non-preemptive

D e p t o f C S E , M B I T S Page 8

Advantage:

 Best suitable for real-time systems

Disadvantage:

 Starvation (Indefinite blocking) – Solution Aging

Q1. Consider the following set of processes that arrive at time

0, with the length of the CPU burst given in milliseconds:

Process Burst

Time

Priority

P1 6 2

P2 8 3

P3 7 1

P4 3 4

 Answer:

P3 P1 P2 P4

 0 7 13 21 24

The waiting time is 7 milliseconds for process P1,

13 milliseconds for process P2, and

0 milliseconds for process P3.

21 for P4

Thus, the average waiting time is (7+ 13+0 + 21)/4 =

10.25 milliseconds.

Finding Turnaround Time

Turnaround time for P1: 13 – 0 = 13

Turnaround time for P2: 21 – 0 = 21

Turnaround time for P3: 7 – 0 = 7

Turnaround time for P4: 24 – 0 = 24

D e p t o f C S E , M B I T S Page 9

Average Turnaround Time is : (13+21+7+24)/4 = 16.25

mS

Since arrival times for all processes are 0, both

preemptive and non-preemptive scheduling will give the

same answers

Q2. Consider the following set of processes with the length of

the CPU burst given in milliseconds:

Process Arrival

Time

Burst

Time

Priority

P1 0 6 2

P2 1 8 3

P3 2 7 1

P4 3 3 4

 Non-Preemptive priority scheduling

P1 P3 P2 P4

 0 6 13 21 24

The waiting time for process P1 : 0 – 0 = 0

The waiting time for process P2 : 13 – 1 = 12

The waiting time for process P3 : 6 – 2 = 4

The waiting time for process P4 : 21 – 3 = 18

Thus, the average waiting time is (0+ 12 + 4 + 18)/4 = 8.5

milliseconds.

Turnaround time for P1: 6 – 0 = 6

Turnaround time for P2: 21 – 1 = 20

Turnaround time for P3: 13 – 2 = 11

D e p t o f C S E , M B I T S Page 10

Turnaround time for P4: 24 – 3 = 21

Average Turnaround Time is : (6+20+11+21)/4 = 14.5

mS

 Preemptive priority scheduling

P1 P3 P1 P2 P4

 0 2 9 13 21 24

The waiting time for process P1 : (0 – 0)+(9 – 2) = 7

The waiting time for process P2 : 13 – 1 = 12

The waiting time for process P3 : 2 – 2 = 0

The waiting time for process P4 : 21 – 3 = 18

Thus, the average waiting time is (7+ 12+0 + 18)/4 = 9.25

milliseconds.

Turnaround time for P1: 13 – 0 = 13

Turnaround time for P2: 21 – 1 = 20

Turnaround time for P3: 9 – 2 = 7

Turnaround time for P4: 24 – 3 = 21

Average Turnaround Time is : (13+20+7+21)/4 = 15.25

mS

4. Round Robin Scheduling (RR)

 RR scheduling is always preemptive.

 Time slice / Time quantum to be given in the question

 A new process is scheduled from FIFO ready queue.

 It works in a circular fashion

Advantages:

 Best suitable for time sharing systems

D e p t o f C S E , M B I T S Page 11

 Each process gets equal opportunity.

Disadvantages:

 Average waiting time is long

 Performance depends on the length of time slice. Careful

fixing of time slice is required

 Performance depends on the effect of context switching

time

Q1. Consider the following set of processes that arrive at time

0, with the length of the CPU burst given in milliseconds:

Assume that time slice is 4 mS

Process Burst

Time

P1 6

P2 8

P3 7

P4 3

 RR Scheduling:

Since all arrive at 0, assume the order P1, P2, P3, P4

P1 P2 P3 P4 P1 P2 P3

 0 4 8 12 15 17 21 24

The waiting time for process P1 : (0-0)+(15-4) = 11

The waiting time for process P2 : (4-0)+(17-8) = 13

The waiting time for process P3: (8-0)+(21-12) = 17

The waiting time for process P4: 12 – 0 = 12

Thus, the average waiting time is (11+ 13+ 17 + 12)/4 =

13.25 milliseconds.

D e p t o f C S E , M B I T S Page 12

Turnaround time for P1: 17 – 0 = 17

Turnaround time for P2: 21 – 0 = 21

Turnaround time for P3: 24 – 0 = 24

Turnaround time for P4: 15 – 0 = 15

Average Turnaround Time is : (17+21+24+15)/4 = 19.25

mS

Q2. Consider the following set of processes with the length of

the CPU burst given in milliseconds: Assume that time slice is

4 mS

Process Arrival

Time

Burst

Time

P1 0 6

P2 1 8

P3 2 7

P4 3 3

 RR scheduling

(Diagram is same since P1 comes first and starts

execution)

P1 P2 P3 P4 P1 P2 P3

 0 4 8 12 15 17 21 24

The waiting time for process P1 : (0-0)+(15-4) = 11

The waiting time for process P2 : (4-1)+(17-8) = 12

The waiting time for process P3: (8-2)+(21-12) = 15

The waiting time for process P4: 12 – 3 = 9

Thus, the average waiting time is (11+ 12+ 15 + 9)/4 =

11.75 milliseconds.

D e p t o f C S E , M B I T S Page 13

Turnaround time for P1: 17 – 0 = 17

Turnaround time for P2: 21 – 1 = 20

Turnaround time for P3: 24 – 2 = 22

Turnaround time for P4: 15 – 3 = 12

Average Turnaround Time is : (17+20+22+12)/4 = 17.75

mS

Note: When P1 completes the first slot, (at time 4), all other

processes have arrived in the ready queue in the order P2,

P3, P4. So there is no confusion. Please look into next

problem.

Q3. Consider the following set of processes with the length of

the CPU burst given in milliseconds: Assume that time slice is

4 mS (University Question KTU APRIL 2018)

Process Burst

Time

Arrival

Time

0 11 0

1 13 5

2 6 9

3 9 13

4 12 17

Answer: RR

Here Arrival time gaps are more. So focus on the order of

arrival in ready queue.

At time 0, only one process P0, it can start.

D e p t o f C S E , M B I T S Page 14

P0

0 4

At time 4, no other process, So P0 can take the next time slice

of 4 mS

P0 P0

0 4 8

At time 5, P1 has arrived in the ready queue (Q). At time 8, P0

is removed from CPU and P1 starts execution. At that time P0

is added to the tail of Q (since it is not completed), where no

other processes has arrived. So P0 will be in the front next.

P0 P1

 0 8 12

At time 9, P2 is added to Q behind P0. At time 12, P1 is

removed and added to Q behind P2.

At time 12, Q is: P0, P2, P1. So next term is for P0. But P0

requires only 3 mS and terminates.

P0 P1 P0

 0 8 12 15

The scheduling continues like this, based on the ready Q order

and finally Gantt chart becomes:

P0 P1 P0 P2 P1 P3 P4

 0 8 12 15 19 23 27 31

P2 P1 P3 P4 P1 P3 P4

 31 33 37 41 45 46 47 51

D e p t o f C S E , M B I T S Page 15

Entry to ready Q is shown as below:

Time Process Remarks Full Q

0 P0 Arrival P0

5 P1 Arrival P1

8 P0 Removed from CPU P1,P0

9 P2 Arrival P0,P2

12 P1 Removed from CPU P0,P2,P1

13 P3 Arrival P2,P1,P3

15 - P0 terminates P1,P3

17 P4 Arrival P1,P3,P4

19 P2 Removed from CPU P1,P3,P4,P2

23 P1 Removed from CPU P3,P4,P2,P1

27 P3 Removed from CPU P4,P2,P1,P3

31 P4 Removed from CPU P2,P1,P3,P4

33 - P2 terminates P1,P3,P4

37 P1 Removed from CPU P3,P4,P1

41 P3 Removed from CPU P4,P1,P3

45 P4 Removed from CPU P1,P3,P4

46 - P1 terminates P3,P4

47 - P3 terminates P4

51 - P4 terminates -

(End of Module 2)
